On powers in shifted products

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On shifted products which are powers

Fermat gave the first example of a set of four positive integers {a1, a2, a3, a4} with the property that aiaj + 1 is a square for 1 ≤ i < j ≤ 4. His example was {1, 3, 8, 120}. Baker and Davenport [1] proved that the example could not be extended to a set of 5 positive integers such that the product of any two of them plus one is a square. Kangasabapathy and Ponnudurai [6], Sansone [9] and Grin...

متن کامل

Shifted products that are coprime pure powers

A set A of positive integers is called a coprime Diophantine powerset if the shifted product ab + 1 of two different elements a and b of A is always a pure power, and the occurring pure powers are all coprime. We prove that each coprime Diophantine powerset A ⊂ {1, . . . , N} has |A| 8000 log N/ log log N for sufficiently large N. The proof combines results from extremal graph theory with numbe...

متن کامل

On sets of integers whose shifted products are powers

Let N be a positive integer and let A be a subset of {1, . . . , N} with the property that aa′ + 1 is a pure power whenever a and a′ are distinct elements of A. We prove that |A|, the cardinality of A, is not large. In particular, we show that |A| ≪ (logN)2/3(log logN)1/3.

متن کامل

On the linear independence of shifted powers

We call shifted power a polynomial of the form (x− a)e. The main goal of this paper is to obtain broadly applicable criteria ensuring that the elements of a finite family F of shifted powers are linearly independent or, failing that, to give a lower bound on the dimension of the space of polynomials spanned by F . In particular, we give simple criteria ensuring that the dimension of the span of...

متن کامل

Shifted powers in binary recurrence sequences

Let {uk} be a Lucas sequence. A standard technique for determining the perfect powers in the sequence {uk} combines bounds coming from linear forms in logarithms with local information obtained via Frey curves and modularity. The key to this approach is the fact that the equation uk = xn can be translated into a ternary equation of the form ay2 = bx2n + c (with a, b, c ∈ Z) for which Frey curve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasnik Matematicki

سال: 2007

ISSN: 0017-095X

DOI: 10.3336/gm.42.2.02